Divide and Conquer:
1) divide input into pieces
2) solve subproblems on each piece
3) combine results

Examples:
- Quicksort
 1) split input into small/big (picks a pivot)
 2) sort each part
 3) rejoice!

- Mergesort
 1) split input list into two halves
 2) sort each part
 3) merge sorted halves

- Binary search
 1) split input into two halves
 2) search in appropriate half
 3) rejoice!

T(n) = O(n) + 2T(n/2) + O(n)

\[
T(n) = \begin{cases}
1 & \text{if } n = 1, \\
T \left(\frac{n}{2} \right) + O(1) & \text{if } n \text{ is even}, \\
T \left(\frac{n-1}{2} \right) + O(1) & \text{if } n \text{ is odd}.
\end{cases}
\]

If steps to merge sort \(n \) items

\[
\log_b a = 1 = d
\]

\[
a = 2, b = 2, d = 0
\]

\[\text{middle case} \Rightarrow T(n) = \Theta(n \log n)\]

\[\text{middle case} \Rightarrow T(n) = \Theta(n \log n)\]

\[\log_b a = \log_2 1 = 0 = d\]

\[\text{middle case} \Rightarrow T(n) = \Theta(n \log n)\]

\[= \Theta(n \log n)\]
Master Method: Solution to recurrence \(T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \)

is:

\[\Theta(n^{\log_b a}) \quad \text{if} \quad f(n) = O(n^{\log_b a - \varepsilon}) \quad d < \log_b a\]

\[\Theta(n^{\log_b a} \log n) \quad \text{if} \quad f(n) = \Theta(n^{\log_b a}) \quad d = \log_b a\]

\[\Theta(f(n)) \quad \text{if} \quad f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right) \quad d > \log_b a\]

and \(a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n) \) for some \(c < 1 \) and large \(n \).
Closest Pair: Given \(n \) points in the plane, determine the pair that are closest to each other.

Brute Force:
- Check each pair of points, keeping track of min distance.
- \(\Theta(n^2) \)

Divide-and-Conquer:
- Sort points by x-coord.
- Divide pb by x-coord.
- Find closest pair among left, right pts.
- Find closest of the closest pairs across split.

\[T(n) = 0(1) + 2T\left(\frac{n}{2}\right) + O(1) + O(n^2) \]
\[= 2T\left(\frac{n}{2}\right) + O(n^2) \]
\[m=2 \quad b=2 \quad d=2 \]
\[\log_b a = 1 \]

\[d > \log_b a \]

(last case)

\[T(n) = \Theta(n^2) \]

Need to do better in second step! (and will tomorrow...)

Sep 10, 2015 Page 3