public class BSTWithLRUC<K extends Comparable<? super K>>
 implements CountMapWithLRUC<K>

public class ListOfCountMapsWithLRUC<K extends Comparable<? super K>>
 implements CountMap<K>

 private List<CountMapWithLRUC<K>> trees;
rooted tree: free tree w/ one node chosen as root

rooted tree: a connected acyclic graph with a root

free tree: a connected acyclic graph with no root
(free) tree: undirected, acyclic, connected graph

TFAE:

1) G is a free tree (acyclic and connected)
2) $u,v \in G.V$, unique simple path $u \rightarrow v$
3) G is connected, but removing any edge disconnects
4) G is connected and $|E| = |V| - 1$
5) G is acyclic and $|E| = |V| - 1$
6) G is acyclic but adding any missing edge results in a cycle
(free) tree: undirected, acyclic, connected graph

TFAE:
1) \(G \) is a free tree (acyclic and connected)

- Suppose \(G \) is a free tree
 - \((G,v) \in G\)
 - Show at least one path between \(u \) and \(v \)
 - \(G \) is a tree hence connected since \(u \approx v \) def. connected

- Show at most one path \(u \approx v \)
 - Suppose that are two distinct paths \(u \approx v \)

 ![Diagram](image)
 - Then there is a cycle in \(G \)
 - So can be \(\geq 2 \) distinct path

2) \(\forall u,v \in V, \exists \) unique simple path \(u \approx v \)

3) \(G \) is connected, but removing any edge disconnects

 - We will show \(|E| \leq |V| - 1 \) (we already know connected \(\Rightarrow |E| \geq |V| - 1 \))
 - Induction on one of the graph
 - Base case: Suppose \(G \) has 1 vertex and removing any edge disconnects.
 - \(|E| = 0 \leq |V| - 1 \)
 - Ind step: Suppose \(G \) has \(k \) vertices and all smaller graphs satisfy \(3 \Rightarrow 4 \)
 - Take \(G \), remove any edge, leaving \(k \) connected components \(C_1, \ldots, C_m \)
 - Each \(C_i \) is smaller than \(G \) and removing any edge from \(C_i \) disconnects \(C_i \)
 - Ind hyp. applies to each \(C_i \), so \(|E_i| \leq |V_i| - 1 \)

 \[|E| = |E_1| + \ldots + |E_m| + 1 \leq |V_1| - 1 + \ldots + |V_m| - 1 + 1 \]
 \[= |V_1| - 1 + \ldots + |V_m| - 1 - 1 + 1 \]
 \[= |V| - m + 1 \leq |V| - 1 \text{ since } m \geq 2 \text{ and } m \leq |V| - 1 \]

4) \(G \) is connected and \(|E| = |V| - 1 \)

5) \(G \) is acyclic and \(|E| = |V| - 1 \)

6) \(G \) is acyclic but adding any missing edge results in a cycle