Edge Classification (DFS and BFS)

- **Tree edge** if \(\text{pred}(v) = u \) (or \(\text{pred}(u) = v \) in undirected)
- **Back edge** if \(u \) is a descendant of \(v \) (or \(v \) is a descendant of \(u \) in undirected)
- **Forward edge** if \(u \) is an ancestor of \(v \) (directed only)
 - (never in BFS)
 - (finds shortest paths)
- **Cross edge** otherwise
 - (never in DFS on undirected)

For graph \(G \), \(G \) is acyclic if and only if no back edges in DFS(\(G \))

\[\Rightarrow \] Suppose \(G \) is acyclic. Suppose \(\exists \) back edge \(u \rightarrow v \) [hope for contradiction]

- Then \(\exists \) tree edges \(v \rightarrow u \). dot of back edge
- So \(v \rightarrow u \rightarrow v \), which is a cycle \(\Rightarrow \)
- So no back edges,

\[\Leftarrow \] Suppose no back edges in DFS of \(G \). [goal: \(G \) is acyclic]

- Suppose \(G \) has a cycle \(v_1, \ldots, v_k, v_1 \) [hope for a contradiction]
- Assume WLOG \(v_1 \) has lowest discovery time. (So \(v_1 \) discovered first)
- So at \(d[v_1] \), \(\text{COLOR}(v_1) = \cdots = \text{COLOR}(v_k) = \text{WHITE} \)
- \(v_k \) is a descendant of \(v_1 \) by While Path Thm
- \((v_k, v_1) \) is a back edge \(\Rightarrow \)
- \(G \) is acyclic.