Topological Sort: Input = DAG Output = ordering of vertx
so edges all go →

Algorithm: Run DFS(G)
order vertices by ↓ f

Want to show ordering vertx by ↓ f gives a valid topological sort
For all edges (u,v), f[u] > f[v]

Correctness: Suppose (u,v) ∈ G.E (and f[u] > f[v])
At time, either a) color[v] = WHITE
 Then there is a white path u → v
 So by WPT v is a descendant of u
 d[u] < d[v] < f[v] < f[u]

b) color[v] = BLACK
 Then d[u] < f[v] < d[w] < f[w]

c) color[v] = GRAY
 v in another of u
 Then (u,v) is a back edge
 Then is a cycle

Application: Longest path (and simple path with most edges) adj list
 1) Topo sort
 2) For each u ∈ G.V in reverse order of topo sort
 l[u] = max \(\max_{(u,v) \in G.E} (l[v]) \), 0
 \(O(V+E) \)
 3) return \(\max_{v \in G.V} l[v] \)
 \(O(V) \)
 \(O(V+E) \)
\[\ell(v) = \text{# edges in longest path that start at } v \]

\[5 \quad 4 \quad 2 \quad 3 \quad 2 \quad 0 \quad 1 \quad 0 \]
Strongly Connected Components

SCC: maximal subset of verts V' of directed graph s.t. $V, v_1, v_2 \in V'$

Algorithm:
1) Run DFS (G) on G
2) Run DFS (\bar{G}), considering verts in order of \bar{f}
3) DFS-trees from 2) are SCCs (in top sort order)

$O(V+E)$

Adj List
Correctness

Lemma: If C, C' are distinct SCCs with $C \neq C'$, $u \in C$, $v \in C'$ then $f(C) \neq f(C')$

Corr: If C, C' distinct SCCs, $u \in C, v \in C', (u,v) \in E^T$ then $f(C) \neq f(C')$

Then: SCC algorithm is correct

Invariant: $1st$ k trees are SCCs