P vs. NP (Overview)

P: set of problems solvable in polynomial time

- **SORT**
- **MST**
- **MULT**
- **EP**

NP: set of polynomially verifiable problems

- **HAM-PATH:** Determine if \(G \) has a Hamiltonian Path
 - visits all vertices exactly once

HAM-PATH-VERIFY \((G, p)\): verify \(p \) is a HP in \(G \)
- follow path, count visits of verts
- make sure each edge exists
- check all counts = 1
- if all checks pass, YES, else NO

\[\text{time} = O(V^2) \]

COMPOSITE: given pos int \(n \), does \(n \) have non-trivial factors \(p \geq \sqrt{n} \)

COMP-VERIFY \((N, p)\): size of input: size of most compact representation
- complete \(x = p \cdot q \)
- return \(N = x \)

\[\text{time} = O(N) \]

\[\text{size of int } N = \log_2 N \]

LONG-PATH: given \(G, k \), determine if \(G \) has a simple path with \(\geq k \) edges

LONGEST-PATH: given \(G \), find length of longest simple path

CIRCUIT-SAT: given a combinational circuit, is there an input that makes output 1

NP-complete: the hardest NP problems

- \(X \) is NP-complete if \(X \in \text{NP} \) and for all other problems \(Y \in \text{NP} \), \(Y \) can be reduced to \(X \)
If we can find a poly-time algorithm for one NPC problem then \(P = NP \)

If we can prove a super-polynomial lower bound for one NP problem then \(P \neq NP \)